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Introduction

Let us consider  4ϕ = −µϕp in Ω,
ϕ = 0 on ∂Ω,
ϕ > 0 in Ω,

where Ω is smooth and bounded in Rn and p > 0.

Let Ω be a strictly convex domain in Rn.

Are the level sets of the positive eigen-function ϕ(x) convex?

For Laplace operator,

p = 1 : log(ϕ), strictly concave.

0 < p < 1 : ϕ
1−p

2 , strictly concave.
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Known results for Laplacian

p = 1,

Brascamp, Lieb (1976) , probability method
Korevaar (1983), analytical approach

0 < p < 1,

Kawohl (1985), Korevaar’s idea
Lee,Vazquez (2008), parabolic approach

1 < p < n+2
n−2 ,

Lin (1994), for energy minimizer
Gladiali, Grossi (2004), for energy minimizing sequence
Lee, Vazquez (2008), ∃ ϕ having strictly convex level sets.
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Fully Nonlinear Eigenvalue Problems

We consider the following elliptic nonlinear eigenvalue problems F(D2ϕ) = −µϕp in Ω,
ϕ = 0 on ∂Ω,
ϕ > 0 in Ω,

(NLEV)

where Ω is a smooth bounded domain in Rn.

Assumptions on Operators.

(F1) F is uniformly elliptic ;

∃ 0 < λ 6 Λ <∞ (called ellipticity constants) s.t. for any
symmetric matrices M and N,

λ||N|| 6 F(M+N) − F(M) 6 Λ||N||, ∀N > 0.

If F is differentiable, λI 6 (Fij) 6 ΛI
(
Fij =

∂F
∂mij

)
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Pucci’s extremal operators

Let 0 < λ 6 Λ. For a symmetric matrix M,

M+
λ,Λ(M) = M+(M) = λ

∑
ei<0

ei +Λ
∑
ei>0

ei

M−
λ,Λ(M) = M−(M) = Λ

∑
ei<0

ei + λ
∑
ei>0

ei,

where ei = ei(M) are the eigenvalues of M.

Let Aλ,Λ be the set of all symmetric matrices whose eigenvalues lie in
[λ,Λ]. Then,

M+
λ,Λ(M) = sup

A∈Aλ,Λ
tr(AM), M−

λ,Λ(M) = inf
A∈Aλ,Λ

tr(AM).

(F2) F is positively homogeneous of order one;

F(tM) = tF(M), ∀t > 0, ∀M ∈ Sn.

If F is differentiable, then F is a linear operator with constant
coefficients.
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Existence and Uniqueness of (NLEV)

Theorem (p = 1, Ishii and Yoshimura)
Let F satisfy (F1), (F2). Then, ∃ positive solution ϕ ∈ C1,α(Ω) of
(NLEV) and the eigenvalue µ > 0 is unique and simple.

⇒ uniqueness up to a constant multiple

Theorem (0 < p < 1)
∃ a unique positive solution ϕ ∈ C0,1(Ω) ∩ C1,α(Ω) for a given µ > 0.

Comparison Principle for 0 < p < 1
Perron’s Method
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Fully Nonlinear Parabolic Flows

For m > 0, F(D2um) = ut in Ω× (0,∞),
u(x, t) = 0 on ∂Ω× (0,∞),
u(x, 0) = uo(x) > 0 in Ω,

(PE)

posed in a smooth bounded domain Ω ⊂ Rn.

Example. F = 4,

m = 1 : heat equation
m > 1 : porous medium equation or slow diffusion equation
0 < m < 1 : fast diffusion equation

The positive eigenfunction ϕ(x)
= Limit of normalized function of u(x, t) as t→ +∞.

m = 1
p
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Main Result (m = 1)

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Ω is convex.

If loguo is concave, then logu(x, t) is concave in x for t > 0.

Theorem (p = 1)
Under the same condition, logϕ(x) is concave,

where ϕ is the positive eigenfunction of (NLEV) with p = 1.

Remark

(i) M−
λ,Λ is a nontrivial example of the concave operators satisfying

(F1), (F2).

(ii) Concavity of F is required when we study geometric property of solutions.
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Main Result (m > 1)

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Ω is convex.
Let uo satisfy −Cuo 6 F(D2umo ) 6 0 for C > 0.

If u
m−1

2
o is concave, then u

m−1
2 (x, t) is concave in x for t > 0.

Theorem (0 < p = 1
m
< 1)

Under the same condition, ϕ
1−p
2 (x) = ϕ

m−1
2m (x) is concave,

where ϕ is the positive eigenfunction of (NLEV) .

Remark
The condition on initial data uo might be removable.
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Parabolic Approach

1 Show convergence to the positive eigenfunction ϕ(x)
after suitable normalization of u(x, t) as t→ +∞

eµtu(x, t) for m = 1

t
1

m−1u(x, t) for m> 1

2 Some geometric quantity will be preserved under the flow.

f(u) = log(u) for m = 1

f(u) = u
m−1

2 for m> 1

the idea of K.-A. Lee and J.L. Vazquez.

3 The geometric property for Eigenvalue problem will be obtained in
the limit as t→ +∞.
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Uniformly Parabolic Equation (m=1)

 F(D2u) = ut in Ω× (0,∞),
u(x, t) = 0 on ∂Ω× (0,∞),
u(x, 0) = uo(x) > 0 in Ω.

(PE)

ϕ(x)e−µt is a similarity solution of (PE),
where µ is the principal eigenvalue and ϕ is the solution of F(D2ϕ) + µϕ = 0 in Ω

ϕ = 0 on ∂Ω
ϕ > 0 in Ω.

(NLEV)

Let v(x, t) := eµtu(x, t). Then v solves

F(D2v) + µv = vt.

Lemma (Uniform Convergence, m = p = 1)
Let F satisfy (F1), (F2). Then, ∃γ∗ > 0 s.t.

v(x, t) = eµtu(x, t) → γ∗ϕ(x) uniformly in Ω as t→ +∞.
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Proof.

∃ to > 0 s.t. 0 < C1ϕ(x) < u(x, to) < C2ϕ(x) and hence for
t > to,

C1ϕ(x)e
−µt < u(x, t) < C2ϕ(x)e

−µt

by Comparison principle

Then, v(x, t) is bounded. From the Weak Harnack inequalities for v,

sup
s>1

||v(·, ·+ s)||Cαx,t(Ω×[0,+∞)) < +∞ for 0 < α < 1.

Let A := { all sequential limits of {v(·, ·+ s)}s>0} and

γ∗ := inf {γ > 0 : ∃w ∈ A s.t. w(x, t) 6 γϕ(x) in Ω×(0,∞)}.

⇒ 0 < C1 < γ
∗ < C2 < +∞.

We show A = {γ∗ϕ}.

(by Maximum principle, Regularity theory.)

(i) w 6 γ∗ϕ ∀w ∈ A, (ii) w = γ∗ϕ ∀w ∈ A

12 / 28



Lemma (Log-concavity)
Suppose that F satisfies (F1), (F2) and is concave and Ω is strictly
convex. If log(uo) is concave, then log(u(x, t)) is concave in x for all
t > 0, i.e.,

D2
x log(u(x, t)) 6 0 for all t > 0.

Proof.

Approximate the operator F by smooth, concave Fε satisfying (F1),

|Fε(M) − Fεij(M)Mij| 6 Cε. (F2’)

(instead of (F2),) where Fεij(M) := ∂Fε

∂mij
(M).

Assume log(uo) is smooth and strictly concave.

Let uε be the solution of

ut = F
ε(D2u) in Ω× (0,∞),

with uo as initial data.
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We put gε = log(uε). Then gε solves

∂tg = e−gFε
(
eg(D2g+∇g∇gt)

)
.

Question D2gε 6 0 ?

In Ω× (0, T ], for small δ > 0, define

Z(t) := sup
y∈Ω,|eβ|=1

gεββ(y, t) +ψ(t),

where ψ(t) = −δ tan(K
√
δt) for K > 0 independent of ε, δ > 0

Suppose that ∃ to > 0 s.t.

Z(t) := sup
y∈Ω,|eβ|=1

gεββ(y, t) +ψ(t)= 0 at t = to

= gεαα(xo, to) +ψ(to),

and assume that to is the first time.

We note that Z(0) < 0 and hence to > 0.

( ∵ gε(·, 0) = loguo is strictly concave.)
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Boundary estimates; as x ∈ Ω→ ∂Ω

gεαα =
uε uεαα − (uεα)

2

(uε)2
=
uεαα
uε

−
(uεα)

2

(uε)2
→ −∞

1 eα = eν, a normal vector to ∂Ω,

|∇uε| = −uεν > 0 on ∂Ω by Hopf’s lemma

uε = 0 on ∂Ω and |D2uε| < C in Ω.

2 eα = eτ, a tangential vector to ∂Ω,

uετ = 0 on ∂Ω

Strict convexity of Ω ⇒ uεττ = uενκτ < −co < 0 on ∂Ω,

where eν, outward normal to ∂Ω, κτ = curvature of ∂Ω in eτ

⇒ The maximum point xo should be in Ω.
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gεαα satisfies

gαα,t = F
ε
ij ·
(
Dijgαα +DigααDjg+DigDjgαα + 2DigαDjgα

)
+ (g2α − gαα)

·
{
e−gFε

(
eg
(
D2g+∇g∇gt

))
− Fεij · (Dijg+DigDjg)

}
+ e−gFεij,kl ·

(
eg(Dijg+DigDjg)

)
α ·
(
eg(Dklg+DkgDlg)

)
α

6 Fεij ·
(
Dijgαα +DigααDjg+DigDjgαα + 2DigαDjgα

)
+ |g2α − gαα|e

−gCε,

from (F2 ′), Concavity of Fε,

where

Fεij := F
ε
ij (e

g (D2g+∇g∇gt)) , Fεij,kl := F
ε
ij,kl (e

g (D2g+∇g∇gt)) .

At the maximum point xo , we have

∇xgεαα = 0, D2
xg
ε
αα 6 0

gεαβ = 0 for β 6= α
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At the maximum point (xo, to),

∂tg
ε
αα 6 2Fεαα(g

ε
αα)

2 + Kε 6 2Λ(gεαα)
2 + Kε

for K := C(Λ,n)

(
1 + max

Ω(−η)×(0,T)

|D2uε|

u2
ε

)
(from uniform C2,γ-

estimates.)

⇒ at t = to,

0 6 Z ′(to) = ∂tg
ε
αα(xo, to) +ψt(to)

6ψt + 2Λψ2 + Kε 6 ψt + K(ψ
2 + ε),

but ψ(t) = −δ tan (K
√
δt),

ψt + K(ψ
2 + ε) <

K(−δ3/2 + δ2)

cos(K
√
δt)

< 0

for 0 < ε� δ and for K
√
δt < π

4
, which is a contradiction.
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Therefore,

Z(t) = sup
y∈Ω,|eβ|=1

gεββ(y, t) +ψ(t) < 0,

i.e., for any eβ with |eβ| = 1,

∂ββ log(uε) < −ψ(t) = δ tan(K
√
δt) 6 δ

for 0 < t < min

(
π

4K
√
δ

, T

)
and for 0 < ε� δ.

Letting ε→ 0 and δ→ 0, we conclude that

∂ββ log(u) 6 0 in Ω× (0, T ].
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Corollary (Log-concavity, p = 1)
Suppose that F satisfies (F1), (F2) and is concave. If Ω is convex, the
eigenfunction ϕ(x) is log-concave, i. e., D2 log(ϕ(x)) 6 0 in Ω.

Proof.

Take dist (x,∂Ω) as initial data uo(x).

If Ω is convex, then dist (x,∂Ω) is concave and also log-concave.

Let u solve (PE) with uo(x) = dist (x,∂Ω).

⇒ u(x, t) is log-concave for any t > 0, i.e.,

1

2
(logu(x, t) + logu(y, t)) − logu

(
x+ y

2
, t

)
6 0.

Uniform Convergence: ||eµtu(x, t) − γ∗ϕ(x)||C0
x(Ω) → 0 as t→∞.

⇒ 1

2
(logϕ(x) + logϕ(y)) − logϕ

(
x+ y

2

)
6 0.

19 / 28



Degenerate parabolic Equation (m > 1)

 F(D2um) = ut in Ω× (0,∞),
u(x, t) = 0 on ∂Ω× (0,∞),
u(x, 0) = uo(x) > 0 in Ω,

(DPE)

(DPE) is degenerate at u = 0

∵ diffusion coefficient = mum−1

Gas flow in a porous medium,

Underground water infiltration

u = density, v := um−1 = pressure,

Scaling property

u is a solution of (DPE)

⇒ So is ũ(x, t) := Au(Bx,Ct) when C = Am−1B2.
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Barenblatt (sub-) solutions

V(x, t) = t−α
(
c− k

|x|2

tβ

) 1
(m−1)

+

,

where α = nΛ
2λ+n(m−1)Λ

, β = 2λ
2λ+n(m−1)Λ

, k = 1
2(2λ+n(m−1)Λ)

and any c > 0.

: source-type solution of (DPE)

waiting time , free boundary problem

We assume

0 < co dist(x,∂Ω) 6 uo(x) 6 Co dist(x,∂Ω) in Ω

for some 0 < co < Co < +∞.
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Asymptotics

Lemma (Aronson-Benilan inequality)
Let F satisfy (F1) and be concave and let v = um−1. Then,

F(D2um) = ut > −C(m)
u

t
and vt > −C(m)

v

t
.

Lemma (Uniform Convergence, m = 1
p
> 1)

Let F satisfy (F1), (F2). Then,

t
1

m−1u(x, t) → ϕ
1
m (x) uniformly in Ω as t→ +∞,

where ϕ is the positive eigenfunction of (NLEV) with eigenvalue 1
m−1

.

We note that for any τ > 0,

U(x, t) :=
ϕ

1
m (x)

(τ+ t)
1

m−1

is a similarity solution of (DPE) with m > 1.
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Square root concavity of the pressure

Approximate the equation: for 0 < η < 1,
F(D2umη ) = ∂tuη in Ω× (0,∞),
uη(x, t) = η on ∂Ω× (0,∞),
uη,o(x) > η in Ω.

(DPE’)

For each η > 0, the equation for gη := umη :

mg
1− 1
m

η F(D2gη) = ∂tgη

becomes a uniformly parabolic equation. (∵ uη(x, t) > η > 0 )

Let g := um and gη := umη .

Let w :=
√
v = u

m−1
2 = g

m−1
2m and wη :=

√
vη = u

m−1
2

η = g
m−1
2m
η .

Lemma (Uniform Lipschitz estimates)

|∇xumη | = |∇xgη| < C uniformly in Ω× (0, T ].

⇒ It suffices to show concavity of wη = u
m−1

2
η for each η > 0.
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Lemma (Boundary estimates)
Let F satisfy (F1), (F2) and be concave and let Ω be strictly convex.
Assume −Cuo 6 F(D2umo ) 6 0 for C > 0. Then, for small η > 0, and for
any eα,

wη,αα(x, t) =
m− 1

2mg
2−m−1

2m
η

(
gηgη,αα −

m+ 1

2m
g2η,α

)
6 −

co

η
m+1

2

on (x, t) ∈ ∂Ω× (0, T ], where co > 0 is independent of η > 0.

Remark

(i) The boundary estimate holds if |D2umη | = |D2gη| is uniformly bounded in

Ω× (0, T ] w.r.t. η > 0.

(ii) To get (i), we assume −Cuo 6 F(D2umo ) 6 0 for C > 0.

( ⇒ ∂tu/u is bounded. )

(iii) In general, we need to prove a weighted C2,γ- estimate of uη up to the
boundary.
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Lemma (Square root concavity of the pressure)
Suppose that F satisfies (F1), (F2) and is concave and Ω is strictly
convex. Assume ”Boundary Estimate” holds.

If
√
um−1
o is concave, then

√
v =
√
um−1(x, t) is concave in x for t > 0.

Proof.

Fix η > 0. Then gη = umη solves a uniformly parabolic equation .

Approximate the equation: for 0 < ε,η < 1,

Fε(D2(uεη)
m) = ∂tu

ε
η in Ω× (0,∞),

with smooth, concave Fε satisfying (F1)

|Fε(M) − Fεij(M)Mij| 6 Cε. (F2’)

wε := (uεη)
m−1

2 = (gεη)
m−1
2m satisfies

∂tw =
m− 1

2
w
m−3
m−1 Fε

(
2m

m− 1
w

3−m
m−1

(
w2D2w+

m+ 1

m− 1
w∇w∇wt

))
.

Question D2w 6 0 ?
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Question D2wε 6 0 ?

In Ω× (0, T), for small δ > 0, assume

sup
y∈Ω,|eβ|=1

wεββ(y, t) +ψ(t)= 0 at t = to

= wεαα(0, to) +ψ(to),

where ψ(t) = −ε− e−1/δeKt tan(K
√
δt), and K > 0 is independent of

ε,δ,η > 0.

to > 0 from the initial condition.

The maximum point x = 0 is interior from ”Boundary estimates”.

We use the function

Z(x, t) =
∑
α,β

wεαβξ
αξβ, ”tilted wεαα ” around (0, to),

where ξβ(x) = δαβ + cαx
β + 1

2cαcγx
γxβ, and ~ξt := (ξ1, · · · ,ξn) and

look at the evolution of

Y(x, t) := Z(x, t) +ψ(t)|~ξ(x)|2.

The remaining argument is similar to the case of m = 1.
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Corollary (0 < p = 1
m
< 1)

Let F satisfy (F1), (F2) and be concave and let Ω be convex.

Then, ϕ
m−1
2m = ϕ

1−p
2 is concave.
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Thank you.
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