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Introduction

Let us consider

Ae =—peP  inQ,
o =0 on 0Q),
@ >0 in Q,

where Q is smooth and bounded in R™ and p > 0.

@ Let Q be a strictly convex domain in R™.
Are the level sets of the positive eigen-function @(x) convex?

For Laplace operator,

ep=1: log(@), strictly concave.

e 0<p<1l: (plgfz, strictly concave.



Known results for Laplacian
ep=1,

e Brascamp, Lieb (1976) , probability method
o Korevaar (1983), analytical approach

e 0<p<«<l,

o Kawohl (1985), Korevaar's idea
o Lee,Vazquez (2008), parabolic approach

n+2
n—2"'

o l<p<

o Lin (1994), for energy minimizer
o Gladiali, Grossi (2004), for energy minimizing sequence

o Lee, Vazquez (2008), 3 ¢ having strictly convex level sets.

o



Fully Nonlinear Eigenvalue Problems

@ We consider the following elliptic nonlinear eigenvalue problems

F(D?p) =—pe?  inQ,
o =0 on 20, (NLEV)
® >0 in Q,

where Q) is a smooth bounded domain in R™.

@ Assumptions on Operators.
(F1) Fis uniformly elliptic ;

F 0<A< A< oo (called ellipticity constants) s.t. for any
symmetric matrices M and N,

AN < F(M +N) —F(M) < AIN[, VN >0.

o If F is differentiable, AI < (Fy;) < Al (F L)

§ = omy;



@ Pucci's extremal operators

Let 0 < A < A. For a symmetric matrix M,

MIAM) =M M) =2 ) e+A) e

e; <0 e; >0
MyAM)=M"(M)=A D) ei+A) e,
e; <0 e; >0

where e; = e;(M) are the eigenvalues of M.

Let Ax A be the set of all symmetric matrices whose eigenvalues lie in
A, Al. Then,

Min(M)= sup tr(AM),  MjA(M)= inf tr(AM).

ACAN A AEAN A

(F2) Fis positively homogeneous of order one;

F(tM) =tF(M), Vt >0, VM e 8™

o If F is differentiable, then F is a linear operator with constant
coefficients.

o



Existence and Uniqueness of (NLEV)

Theorem (p = 1, Ishii and Yoshimura)

Let F satisfy (F1), (F2). Then, 3 positive solution ¢ € C1*(Q) of
(NLEV) and the eigenvalue w > 0 is unique and simple.

= uniqueness up to a constant multiple

Theorem (0 <p < 1)
3 a unique positive solution @ € C%1(Q) N C**(Q) for a given u > 0.

o Comparison Principle for 0 < p <1
o Perron’s Method

6/28



Fully Nonlinear Parabolic Flows

@ For m >0,
F(D*2u™) =uy in Q x (0, 00),
u(x,t) =0 on 0Q) x (0, 00), (PE)
u(x,0) =1us(x) =0 in Q,

posed in a smooth bounded domain QO C R™.

@ Example. F=A,

em=1: heat equation
o m>1: porous medium equation or slow diffusion equation
e 0 <m< 1 : fast diffusion equation

@ The positive eigenfunction @(x)
= Limit of normalized function of u(x,t) ast— 4oo.

1
o Mm= =
P



Main Result (m = 1)

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Q is convex.

If logu, is concave, then logu(x,t) is concave in x fort > 0.

Theorem (p =1)
Under the same condition, log @(x) is concave,

where @ is the positive eigenfunction of (NLEV) with p = 1.

Remark

(i) My A is a nontrivial example of the concave operators satisfying
(F1), (F2).

(if) Concavity of F is required when we study geometric property of solutions.



Main Result (m > 1)

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Q is convex.
Let u, satisfy —Cu, < F(D?u™) < 0 for C > 0.

m—1 mo1 ) )
Ifuo? s concave, thenu 2 (x,t) is concave in x fort > 0.

1
Theorem (0 <p = - < 11)
oy . — m—1 .
Under the same condition, @ 2 (x) = @ 2w (x) is concave,
where @ is the positive eigenfunction of (NLEV) .

Remark

The condition on initial data u, might be removable.
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Parabolic Approach

@ Show convergence to the positive eigenfunction @(x)
after suitable normalization of u(x,t) as t — +oo

° eftu(x, t) form=1

1
tm—Tu(x,t) form>1

@ Some geometric quantity will be preserved under the flow.
° f(u) =log(u) form=1
f(u):u% form >1
o the idea of K.-A. Lee and J.L. Vazquez.

© The geometric property for Eigenvalue problem will be obtained in
the limit as t — 4o00.



Uniformly Parabolic Equation (m=1)

F(D%u) =uy in Q x (0, 00),
u(x,t) =0 on 0Q) x (0, c0), (PE)
u(x,0) =ue(x)>=0 in Q.

e @(x)e ™' is a similarity solution of (PE),
where  is the principal eigenvalue and ¢ is the solution of

=0 ondQ (NLEV)

F(D?@)+une =0 inQ
¢
(] >0 in Q.

o Let v(x,t) := e"*tu(x, t). Then v solves

F(D?V) + uv = vy.

Lemma (Uniform Convergence, m =p = 1)
Let F satisfy (F1), (F2). Then, 3v* > 0 s.t.

v(x,t) = e*tu(x,t) = v*@(x) uniformly in Q as t — +oo0.
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Proof.

e dt, >0st. 0<Cio(x) <u(x,ts) < Cap(x) and hence for
t > to,
Cip(x)e ™ <u(x, t) < Cop(x)e Mt

by Comparison principle

Then, v(x, t) is bounded. From the Weak Harnack inequalities for v,

sup [[v(-, - +S)‘|C§‘t(ﬁ><[0,+n>o)) <400 for 0<a<1.
s>1 ’

o Let A := {all sequential limits of {v(-, -+ s)}s>0} and
Y i=inf{y>0:dwe Ast. wkx,t) <ve(x)in Qx(0, o)}
= 0<C<vy*<(C<+oo.

o We show A = {y*@}.
(by Maximum principle, Regularity theory.)
Hw<y'e YweA, (iYw=v*¢ Ywed



Lemma (Log-concavity)
Suppose that F satisfies (F1), (F2) and is concave and Q is strictly
convex. If log(u,) is concave, then log(u(x,t)) is concave in x for all

t>0, ie,
Di log(u(x,t)) <0 forallt>0.

Proof.

@ Approximate the operator F by smooth, concave F¢ satisfying (F1),
[F€(M) — Fi;(M)My] < Ce. (F2")

(instead of (F2),) where Fj(M) := 337 (M).

@ Assume log(u, ) is smooth and strictly concave.
@ Let uf be the solution of

u, = F¢(D%u) in Q x (0, 00),

with u, as initial data.

13/28



@ We put g° = log(u®). Then g* solves
dcg = e 9F° (e9(D?g + VgVg')).
Question D2ge <07
@ In Q x (0,T], for small 5 >0, define

Z(t):= sup  ggply.t) +¥(t),
yGQ,Ieﬁ\:l

where (t) = —5 tan(K+/5t) for K > 0 independent of ¢, > 0

@ Suppose that It, >0 s.t.

Z(t):=  sup 9ppy.t) +d(t)=0 at t=t,
ye,legl=1

= gaualXo to) +(to),
and assume that t, is the first time.

@ We note that Z(0) < 0 and hence t, > 0.

(- g°(-,0) = logu, is strictly concave.)
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@ Boundary estimates; as x € Q — 0Q)

gs — oo —
= (ue)? ue o (uf)?

2 2
uf g — (ug)” UG (ug)
€

@ e, =e,, a normal vector to 0Q),

o |[Vuf|=—uf > 0on 0Q by Hopf's lemma
e u® =00n93Q and |ID?uf| < Cin Q.

@ e, = e, a tangential vector to 0Q),

e uf=00n00
@ Strict convexity of QO = ui, =ujk: < —co <0o0n 9Q,
where e, outward normal to 0Q), k. = curvature of 0Q) in e,

= The maximum point X, should be in Q.

o



e g, satisfies

oo, t = Ffj ‘ (Diigcxcx + DigaaDjg + DigDjguaa + 2D19“Di9“)
+ (9% ~ Jaad)
- {e 9F (e9 (ng +VgVg')) — F§; - (Dijg + DigDjg) }
+ engijkL . (eg(Di]-g + Dingg))“ . (eg(Dklg + Dnglg))o(
< Fy- (Dijgaa + DigaaDjg + DigDjguan + 2DigaDjga)
+19% — gaale 9Ce,
from (F2’), Concavity of F¢,

where
5 :=F5 (e9 (D?g +VgVg')), Ffjp=F§i (e (D*g+VgVg')).

@ At the maximum point x, , we have
° Vigha =0, D3giy <0
o g =0 for B #

16
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At the maximum point (xq, to),

0t95a < 2F5n(954)° + Ke < 2A(g5, )% + Ke

D%u,
for K:= C(A,n) (1 —+ max D]

5— | (from uniform C>Y-
Qgyx0T) U2

estimates.)

at t =+t,,

0 < Zl(to) = atgiux(xmto) +1bt(to)
<Py +2AP2 +Ke <Py + K2 + ),
but P(t) = —5tan (KV/5t),

K(—8%2 + &)

2
Py + K+ ¢) < 7(:05(K\/8t) <

for 0 < ¢ < & and for KV/8t < Z, which is a contradiction.
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Therefore,

Z{t)= sup  gggly, t)+¥(t) <O,
yGQ,Ieﬁ\:l

i.e., for any eg with |eg| =1,
dpp log(uf) < —(t) = dtan(KV/dt) < 6
. s
for 0 <t < min (7T) and for 0 < ¢ < b.
4K/5

Letting ¢ — 0 and 6 — 0, we conclude that

dpp log(w) <0 in Qx (0,T).



Corollary (Log-concavity, p = 1)

Suppose that F satisfies (F1), (F2) and is concave. If Q is convex, the
eigenfunction @(x) is log-concave, i.e., D?log(p(x)) <0 in Q.

Proof.
@ Take dist (x,0Q)) as initial data uq(x).

e If Q is convex, then dist (x,0Q) is concave and also log-concave.

@ Let u solve (PE) with u,(x) = dist (x, 0Q)).

= u(x,t) is log-concave for any t > 0, i.e.,

1
5 (logu(x,t) + logu(y,t)) —logu (%t) <0.

@ Uniform Convergence: |[le"tu(x, t) —y*(p(x)llcg @) —+ 0ast— oo

= (Iogw(XJJrlog(p(y))—logcp(w) <0.

1
2 2
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Degenerate parabolic Equation (m > 1)

F(D?2u™) =u, in Q x (0, 00),
u(x,t) =0 on 0Q) x (0, 00), (DPE)
u(x,0) =1us(x)>0 inQ,

o (DPE) is degenerate at u =0

- diffusion coefficient = mu™—1

@ Gas flow in a porous medium,

Underground water infiltration

m—1

@ u=density, vi=u = pressure,

@ Scaling property
e u is a solution of (DPE)
= Sois fi(x,t):= Au(Bx, Ct) when C = A™1B2,



@ Barenblatt (sub-) solutions

V(x, t) = t"‘( X|2)

- nA 2 [ —
where & = 5-r B = ot A K= 2?\+n (m—1)A)

and any ¢ > 0.

: source-type solution of (DPE)
@ waiting time , free boundary problem

@ We assume
0 < codist(x,0Q) < uo(x) < Codist(x,0Q) in Q

for some 0 < ¢, < Cy < Ho00.



Asymptotics

Lemma (Aronson-Benilan inequality)
Let T satisfy (F1) and be concave and let v =u™"1. Then,

Vi = —C(m)\l.

u
t

F(D>u™) = u; > —C(m)¥ and

|=

Lemma (Uniform Convergence, m = 5> 1)
Let F satisfy (F1), (F2). Then,
uniformly in Q as t — +o0,

1

m—1

teiu(xt) — @ (x)

where @ is the positive eigenfunction of (NLEV) with eigenvalue

e We note that for any T > 0,

1
m (X
0 () is a similarity solution of (DPE) with m > 1.

Ux, t) = ————
-




Square root concavity of the pressure
@ Approximate the equation: for 0 <n < 1,

F(D2uj1“) =0iuy, in Qx (0, 00),
un(x,t) =n on 0Q) x (0, c0), (DPE")
Unol(x) >1 in Q.

@ For eachn >0, the equation for g, :==u":

17% 2
mgn ™ F(Dgy) = 0tgn

becomes a uniformly parabolic equation. (- uy(x,t) =1 >0)

—— m —— m

@ Let g:=u™ and g, :=u"
m—1 m;l 1121“:1
=g 2m and W, = ,/V; = Uy =gy " .

m—1

Let wi=Vv=u 2

Lemma (Uniform Lipschitz estimates)

IVl =Vignl < C uniformly in  Q x (0, T].

m—1
= It suffices to show concavity of wy; =u, > for eachn > 0.
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Lemma (Boundary estimates)

Let F satisfy (F1), (F2) and be concave and let Q) be strictly convex.
Assume —Cu, < F(D*u™) < 0 for C > 0. Then, for smalln > 0, and for
any ey,

m-—1 m+1 c
Wi aal(X, t) = T (911911,060( 7 9121,cx) € ——
2mgn 2m m n e

n (x,t) € 0Q x (0, T], where ¢, > 0 is independent of n > 0.

Remark

(i) The boundary estimate holds if \Dzullnl = |D?gy| is uniformly bounded in
Q x (0, T] w.r.t. n> 0.

(ii) To get (i), we assume —Cu, < F(D*u™) <0 for C > 0.
( = 9¢u/u is bounded. )

(iii) In general, we need to prove a weighted C*Y- estimate of W, up to the
boundary.

N

R

o



Lemma (Square root concavity of the pressure)

Suppose that F satisfies (F1), (F2) and is concave and Q is strictly
convex. Assume "Boundary Estimate” holds.

If v/ul™ 1 js concave, then VvV =+vum1(x,t) is concave in x fort > 0.
Proof.

@ Fixn > 0. Then gy = u;* solves a uniformly parabolic equation .
@ Approximate the equation: for 0 < ¢,1 < 1,
FE(Dz(uf])m) =0y, in Q x (0, c0),

with smooth, concave F¢ satisfying (F1)

[FE(M) — F§;(M)My] < Ce. (F2)
° WE — (u;)‘“fl = (g8) % satisfies

ow = m=-2 W e iw% w2D%w + gWVWVWt .
2 m—1 m—1



Question

D2we <07
In Q x (0,T), for small 6 > 0, assume

sup wipl(y t) +P(t)=0 at t=t,
HEQ,‘EﬁIZI
:W;—“(O,to) +(to),
where (1) = —e — e /%Xt tan(KVv/5t), and K > 0 is independent of
g,6,m>0.

@ t, > 0 from the initial condition.

@ The maximum point x = 0 is interior from " Boundary estimates”.

We use the function

Z(x,t) = ZW;BE'“E'B’ "tilted wi, " around (0, t,),
x, 3
where &P (x) = Sdwp + caxP + %cacyx"xﬁ, and £t ;= (&L,.-. , &") and

look at the evolution of
Y(x, ) = Z(x, 1) + (1)E)P.

The remaining argument is similar to the case of m = 1.



Corollary (0 <p =+ < 1)
Let F satisfy (F1), (F2) and be concave and let () be convex.

m—1 1—p .
Then, o 2m = @ 2 s concave.
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Thank you.
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