Asymptotic Behavior in Degenerate Parabolic Nonlinear equations and its application to Elliptic Eigenvalue Problems

Soojung Kim
Department of Mathematical Sciences
Seoul National University, Korea

November, 2012
(joint with Ki-Ahm Lee)

Introduction

Let us consider

$$
\left\{\begin{aligned}
\triangle \varphi & =-\mu \varphi^{p} & & \text { in } \Omega \\
\varphi & =0 & & \text { on } \partial \Omega \\
\varphi & >0 & & \text { in } \Omega
\end{aligned}\right.
$$

where Ω is smooth and bounded in \mathbb{R}^{n} and $p>0$.

- Let Ω be a strictly convex domain in \mathbb{R}^{n}.

Are the level sets of the positive eigen-function $\varphi(x)$ convex?
For Laplace operator,

- $p=1$: $\quad \log (\varphi)$, strictly concave.
- $0<p<1$: $\varphi^{\frac{1-p}{2}}$, strictly concave.

Known results for Laplacian

- $p=1$,
- Brascamp, Lieb (1976), probability method
- Korevaar (1983), analytical approach
- $0<\mathrm{p}<1$,
- Kawohl (1985), Korevaar's idea
- Lee,Vazquez (2008), parabolic approach
- $1<p<\frac{n+2}{n-2}$,
- Lin (1994), for energy minimizer
- Gladiali, Grossi (2004), for energy minimizing sequence
- Lee, Vazquez (2008), $\exists \varphi$ having strictly convex level sets.

Fully Nonlinear Eigenvalue Problems

- We consider the following elliptic nonlinear eigenvalue problems

$$
\left\{\begin{array}{cll}
\mathrm{F}\left(\mathrm{D}^{2} \varphi\right) & =-\mu \varphi^{\mathrm{p}} & \tag{NLEV}\\
\text { in } \Omega, \\
\varphi & =0 & \\
\varphi & >0 & \\
\text { on } \partial \Omega \\
\text { in } \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in \mathbb{R}^{n}.

- Assumptions on Operators.
(F1) F is uniformly elliptic ;
$\exists 0<\lambda \leqslant \Lambda<\infty$ (called ellipticity constants) s.t. for any symmetric matrices M and N,

$$
\lambda\|N\| \leqslant F(M+N)-F(M) \leqslant \Lambda\|N\|, \quad \forall N \geqslant 0 .
$$

- If F is differentiable, $\lambda \mathbf{I} \leqslant\left(F_{i j}\right) \leqslant \Lambda \mathbf{I} \quad\left(F_{i j}=\frac{\partial F}{\partial m_{i j}}\right)$
- Pucci's extremal operators

Let $0<\lambda \leqslant \Lambda$. For a symmetric matrix M,

$$
\begin{aligned}
& \mathcal{M}_{\lambda, \Lambda}^{+}(M)=\mathcal{M}^{+}(M)=\lambda \sum_{e_{i}<0} e_{i}+\Lambda \sum_{e_{i}>0} e_{i} \\
& \mathcal{M}_{\lambda, \Lambda}^{-}(M)=\mathcal{M}^{-}(M)=\Lambda \sum_{e_{i}<0} e_{i}+\lambda \sum_{e_{i}>0} e_{i}
\end{aligned}
$$

where $e_{i}=e_{i}(M)$ are the eigenvalues of M.
Let $\mathcal{A}_{\lambda, \wedge}$ be the set of all symmetric matrices whose eigenvalues lie in $[\lambda, \Lambda]$. Then,

$$
\mathcal{M}_{\lambda, \Lambda}^{+}(M)=\sup _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{tr}(A M), \quad \mathcal{M}_{\lambda, \Lambda}^{-}(M)=\inf _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{tr}(A M)
$$

(F2) F is positively homogeneous of order one;

$$
\mathrm{F}(\mathrm{tM})=\mathrm{tF}(M), \quad \forall \mathrm{t} \geqslant 0, \quad \forall \mathrm{M} \in \mathcal{S}^{\mathrm{n}}
$$

- If F is differentiable, then F is a linear operator with constant coefficients.

Existence and Uniqueness of (NLEV)

Theorem ($\mathrm{p}=1$, Ishii and Yoshimura)
Let F satisfy (F1), (F2). Then, \exists positive solution $\varphi \in \mathrm{C}^{1, \alpha}(\bar{\Omega})$ of (NLEV) and the eigenvalue $\mu>0$ is unique and simple.
\Rightarrow uniqueness up to a constant multiple

Theorem $(0<p<1)$
\exists a unique positive solution $\varphi \in \mathrm{C}^{0,1}(\bar{\Omega}) \cap \mathrm{C}^{1, \alpha}(\Omega)$ for a given $\mu>0$.

- Comparison Principle for $0<p<1$
- Perron's Method

Fully Nonlinear Parabolic Flows

- For $m>0$,

$$
\left\{\begin{array}{cll}
F\left(D^{2} u^{m}\right) & =u_{t} & \text { in } \Omega \times(0, \infty) \tag{PE}\\
u(x, t) & =0 & \text { on } \partial \Omega \times(0, \infty) \\
u(x, 0) & =u_{o}(x) \geqslant 0 & \\
\text { in } \Omega
\end{array}\right.
$$

posed in a smooth bounded domain $\Omega \subset \mathbb{R}^{n}$.

- Example. $F=\triangle$,
- $m=1$: heat equation
- $m>1$: porous medium equation or slow diffusion equation
- $0<m<1$: fast diffusion equation
- The positive eigenfunction $\varphi(\mathrm{x})$
$=$ Limit of normalized function of $\mathfrak{u}(x, t)$ as $t \rightarrow+\infty$.
- $\mathrm{m}=\frac{1}{\mathrm{p}}$

Main Result $(m=1)$

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Ω is convex. If $\log \mathrm{u}_{\mathrm{o}}$ is concave, then $\log \mathrm{u}(\mathrm{x}, \mathrm{t})$ is concave in x for $\mathrm{t}>0$.

Theorem ($\mathrm{p}=1$)
Under the same condition, $\log \varphi(x)$ is concave, where φ is the positive eigenfunction of (NLEV) with $p=1$.

Remark

(i) $\mathcal{M}_{\lambda, \wedge}^{-}$is a nontrivial example of the concave operators satisfying (F1), (F2).
(ii) Concavity of F is required when we study geometric property of solutions.

Main Result $(m>1)$

Theorem
Suppose that F satisfies (F1), (F2) and is concave and that Ω is convex.
Let u_{o} satisfy $-\mathrm{C} \mathrm{u}_{\mathrm{o}} \leqslant \mathrm{F}\left(\mathrm{D}^{2} \mathfrak{u}_{\mathrm{o}}^{\mathrm{m}}\right) \leqslant 0$ for $\mathrm{C}>0$.
If $\mathcal{u}_{o}^{\frac{m-1}{2}}$ is concave, then $\mathfrak{u}^{\frac{m-1}{2}}(x, t)$ is concave in x for $t>0$.

Theorem ($0<p=\frac{1}{m}<1$)
Under the same condition, $\varphi^{\frac{1-p}{2}}(x)=\varphi^{\frac{m-1}{2 m}}(x)$ is concave, where φ is the positive eigenfunction of (NLEV).

Remark

The condition on initial data u_{o} might be removable.

Parabolic Approach

(1) Show convergence to the positive eigenfunction $\varphi(x)$ after suitable normalization of $\mathfrak{u}(\mathrm{x}, \mathrm{t})$ as $\mathrm{t} \rightarrow+\infty$

- $\quad e^{\mu t} u(x, t) \quad$ for $m=1$

$$
t^{\frac{1}{m-1}} u(x, t) \quad \text { for } m>1
$$

(2) Some geometric quantity will be preserved under the flow.

- $\quad f(u)=\log (u)$ for $m=1$

$$
f(u)=u^{\frac{m-1}{2}} \quad \text { for } m>1
$$

- the idea of K.-A. Lee and J.L. Vazquez.
(0) The geometric property for Eigenvalue problem will be obtained in the limit as $t \rightarrow+\infty$.

Uniformly Parabolic Equation $(\mathrm{m}=1)$

$$
\left\{\begin{array}{lll}
\mathrm{F}\left(\mathrm{D}^{2} u\right)=u_{t} & \text { in } \Omega \times(0, \infty) \tag{PE}\\
u(x, t)=0 & \text { on } \partial \Omega \times(0, \infty) \\
u(x, 0) & =u_{o}(x) \geqslant 0 & \text { in } \Omega
\end{array}\right.
$$

- $\varphi(x) e^{-\mu t}$ is a similarity solution of (PE),
where μ is the principal eigenvalue and φ is the solution of

$$
\left\{\begin{array}{cll}
\mathrm{F}\left(\mathrm{D}^{2} \varphi\right)+\mu \varphi & =0 & \text { in } \Omega \tag{NLEV}\\
\varphi & =0 & \text { on } \partial \Omega \\
\varphi & >0 & \text { in } \Omega
\end{array}\right.
$$

- Let $v(x, t):=e^{\mu t} u(x, t)$. Then v solves

$$
\mathrm{F}\left(\mathrm{D}^{2} v\right)+\mu v=v_{\mathrm{t}}
$$

Lemma (Uniform Convergence, $m=p=1$)
Let F satisfy (F1), (F2). Then, $\exists \gamma^{*}>0$ s.t.

$$
v(x, t)=e^{\mu \mathrm{t}} u(\mathrm{x}, \mathrm{t}) \rightarrow \gamma^{*} \varphi(\mathrm{x}) \quad \text { uniformly in } \bar{\Omega} \text { as } \mathrm{t} \rightarrow+\infty
$$

Proof.

- $\exists t_{o}>0$ s.t. $0<C_{1} \varphi(x)<u\left(x, t_{o}\right)<C_{2} \varphi(x)$ and hence for $t \geqslant t_{o}$,

$$
C_{1} \varphi(x) e^{-\mu t}<u(x, t)<C_{2} \varphi(x) e^{-\mu t}
$$

by Comparison principle
Then, $v(\mathrm{x}, \mathrm{t})$ is bounded. From the Weak Harnack inequalities for v,

$$
\sup _{s \geqslant 1}\|v(\cdot, \cdot+s)\|_{C_{x, t}^{\alpha}(\bar{\Omega} \times[0,+\infty))}<+\infty \quad \text { for } 0<\alpha<1 .
$$

- Let $\mathcal{A}:=\left\{\right.$ all sequential limits of $\left.\{v(\cdot, \cdot+s)\}_{s \geqslant 0}\right\}$ and

$$
\begin{aligned}
& \gamma^{*}:=\inf \{\gamma>0: \exists w \in \mathcal{A} \text { s.t. } w(x, \mathrm{t}) \leqslant \gamma \varphi(\mathrm{x}) \text { in } \Omega \times(0, \infty)\} . \\
& \Rightarrow \quad 0<\mathrm{C}_{1}<\gamma^{*}<\mathrm{C}_{2}<+\infty
\end{aligned}
$$

- We show $\mathcal{A}=\left\{\gamma^{*} \varphi\right\}$.
(by Maximum principle, Regularity theory.)
(i) $w \leqslant \gamma^{*} \varphi \quad \forall w \in \mathcal{A}$,
(ii) $w=\gamma^{*} \varphi \quad \forall w \in \mathcal{A}$

Lemma (Log-concavity)

Suppose that F satisfies (F1), (F2) and is concave and Ω is strictly convex. If $\log \left(\mathrm{u}_{\mathrm{o}}\right)$ is concave, then $\log (\mathrm{u}(\mathrm{x}, \mathrm{t}))$ is concave in x for all $t>0$, i.e.,

$$
D_{x}^{2} \log (u(x, t)) \leqslant 0 \quad \text { for all } t>0
$$

Proof.

- Approximate the operator F by smooth, concave F^{ε} satisfying ($F 1$),

$$
\begin{equation*}
\left|F^{\varepsilon}(M)-F_{i j}^{\varepsilon}(M) M_{i j}\right| \leqslant C \varepsilon . \tag{F2'}
\end{equation*}
$$

(instead of (F2),) where $F_{i j}^{\varepsilon}(M):=\frac{\partial F^{\varepsilon}}{\partial m_{i j}}(M)$.

- Assume $\log \left(u_{o}\right)$ is smooth and strictly concave.
- Let $\mathfrak{u}^{\varepsilon}$ be the solution of

$$
u_{t}=F^{\varepsilon}\left(D^{2} u\right) \quad \text { in } \Omega \times(0, \infty)
$$

with u_{o} as initial data.

- We put $\mathrm{g}^{\varepsilon}=\log \left(\mathrm{u}^{\varepsilon}\right)$. Then g^{ε} solves

$$
\partial_{\mathrm{t}} \mathrm{~g}=\mathrm{e}^{-\mathrm{g}} \mathrm{~F}^{\varepsilon}\left(\mathrm{e}^{\mathrm{g}}\left(\mathrm{D}^{2} \mathrm{~g}+\nabla \mathrm{g} \nabla \mathrm{~g}^{\mathrm{t}}\right)\right) .
$$

Question $\mathrm{D}^{2} \mathrm{~g}^{\varepsilon} \leqslant 0$?

- $\ln \Omega \times(0, T]$, for small $\delta>0, \quad$ define

$$
\mathrm{Z}(\mathrm{t}):=\sup _{y \in \Omega,\left|e_{\beta}\right|=1} g_{\beta \beta}^{\varepsilon}(\mathrm{y}, \mathrm{t})+\psi(\mathrm{t}),
$$

where $\psi(t)=-\delta \tan (K \sqrt{\delta} t)$ for $K>0$ independent of $\varepsilon, \delta>0$

- Suppose that $\exists t_{0} \geqslant 0$ s.t.

$$
\begin{aligned}
Z(t) & :=\sup _{y \in \Omega,\left|e_{\beta}\right|=1} g_{\beta \beta}^{\varepsilon}(y, t)+\psi(t)=0 \quad \text { at } t=t_{o} \\
& =g_{\alpha \alpha}^{\varepsilon}\left(x_{o}, t_{o}\right)+\psi\left(t_{o}\right)
\end{aligned}
$$

and assume that t_{o} is the first time.

- We note that $Z(0)<0$ and hence $t_{o}>0$.
$\left(\because g^{\varepsilon}(\cdot, 0)=\log u_{o}\right.$ is strictly concave. $)$
- Boundary estimates; as $x \in \Omega \rightarrow \partial \Omega$

$$
g_{\alpha \alpha}^{\varepsilon}=\frac{u^{\varepsilon} u_{\alpha \alpha}^{\varepsilon}-\left(u_{\alpha}^{\varepsilon}\right)^{2}}{\left(u^{\varepsilon}\right)^{2}}=\frac{u_{\alpha \alpha}^{\varepsilon}}{u^{\varepsilon}}-\frac{\left(u_{\alpha}^{\varepsilon}\right)^{2}}{\left(u^{\varepsilon}\right)^{2}} \rightarrow-\infty
$$

(1) $e_{\alpha}=e_{v}$, a normal vector to $\partial \Omega$,

- $\left|\nabla \mathfrak{u}^{\varepsilon}\right|=-u_{v}^{\varepsilon}>0$ on $\partial \Omega$ by Hopf's lemma
- $u^{\varepsilon}=0$ on $\partial \Omega$ and $\left|D^{2} u^{\varepsilon}\right|<C$ in Ω.
(2) $e_{\alpha}=e_{\tau}$, a tangential vector to $\partial \Omega$,
- $u_{\tau}^{\varepsilon}=0$ on $\partial \Omega$
- Strict convexity of $\Omega \Rightarrow u_{\tau \tau}^{\varepsilon}=u_{\nu}^{\varepsilon} \kappa_{\tau}<-c_{o}<0$ on $\partial \Omega$, where e_{γ}, outward normal to $\partial \Omega, \kappa_{\tau}=$ curvature of $\partial \Omega$ in e_{τ}
\Rightarrow The maximum point x_{o} should be in Ω.
- $g_{\alpha \alpha}^{\varepsilon}$ satisfies

$$
\left.\begin{array}{rl}
g_{\alpha \alpha, \mathrm{t}}= & F_{i j}^{\varepsilon} \cdot\left(D_{i j} g_{\alpha \alpha}+D_{i} g_{\alpha \alpha} D_{j} g+D_{i} g D_{j} g_{\alpha \alpha}+2 D_{i} g_{\alpha} D_{j} g_{\alpha}\right) \\
& +\left(g_{\alpha}^{2}-g_{\alpha \alpha}\right) \\
& \cdot\left\{e^{-g} F^{\varepsilon}\left(e^{g}\left(D^{2} g+\nabla g \nabla g^{t}\right)\right)-F_{i j}^{\varepsilon} \cdot\left(D_{i j} g+D_{i} g D_{j} g\right)\right\} \\
& +e^{-g} F_{i j, k l}^{\varepsilon} \cdot\left(e^{g}\left(D_{i j} g+D_{i} g D_{j} g\right)\right)_{\alpha} \cdot\left(e^{g}\left(D_{k l} g+D_{k} g D_{i} g\right)\right){ }_{\alpha} \\
\leqslant & F_{i j}^{\varepsilon} \cdot\left(D_{i j} g_{\alpha \alpha}+D_{i} g_{\alpha \alpha} D_{j} g+D_{i} g D_{j} g_{\alpha \alpha}+2 D_{i} g_{\alpha} D_{j} g_{\alpha}\right) \\
& +\left|g_{\alpha}^{2}-g_{\alpha \alpha}\right| e^{-g} C \varepsilon, \\
& \text { from }\left(F 2^{\prime}\right), \text { Concavity of } F^{\varepsilon},
\end{array}\right\}
$$

- At the maximum point x_{0}, we have
- $\nabla_{x} g_{\alpha \alpha}^{\varepsilon}=0, \quad D_{x}^{2} g_{\alpha \alpha}^{\varepsilon} \leqslant 0$
- $g_{\alpha \beta}^{\varepsilon}=0 \quad$ for $\beta \neq \alpha$
- At the maximum point $\left(\chi_{o}, t_{o}\right)$,

$$
\partial_{t} \mathrm{~g}_{\alpha \alpha}^{\varepsilon} \leqslant 2 \mathrm{~F}_{\alpha \alpha}^{\varepsilon}\left(\mathrm{g}_{\alpha \alpha}^{\varepsilon}\right)^{2}+\mathrm{K} \varepsilon \leqslant 2 \wedge\left(\mathrm{~g}_{\alpha \alpha}^{\varepsilon}\right)^{2}+\mathrm{K} \varepsilon
$$

for $\mathrm{K}:=\mathrm{C}(\Lambda, \mathrm{n})\left(1+\max _{\Omega_{(-\eta)} \times(0, \mathrm{~T})} \frac{\left|D^{2} \mathrm{u}_{\varepsilon}\right|}{\mathrm{u}_{\varepsilon}^{2}}\right)$ (from uniform $\mathrm{C}^{2, \gamma_{-}}$ estimates.)
\Rightarrow at $\mathrm{t}=\mathrm{t}_{\mathrm{o}}$,

$$
\begin{aligned}
0 \leqslant Z^{\prime}\left(t_{o}\right) & =\partial_{t} g_{\alpha \alpha}^{\varepsilon}\left(x_{o}, t_{o}\right)+\psi_{t}\left(t_{\mathrm{o}}\right) \\
& \leqslant \psi_{\mathrm{t}}+2 \wedge \psi^{2}+K \varepsilon \leqslant \psi_{\mathrm{t}}+K\left(\psi^{2}+\varepsilon\right),
\end{aligned}
$$

but $\psi(t)=-\delta \tan (K \sqrt{\delta} t)$,

$$
\psi_{t}+K\left(\psi^{2}+\varepsilon\right)<\frac{K\left(-\delta^{3 / 2}+\delta^{2}\right)}{\cos (K \sqrt{\delta} t)}<0
$$

for $0<\varepsilon \ll \delta$ and for $K \sqrt{\delta} t<\frac{\pi}{4}$, which is a contradiction.

Therefore,

$$
Z(t)=\sup _{y \in \Omega,\left|e_{\beta}\right|=1} g_{\beta \beta}^{\varepsilon}(y, t)+\psi(t)<0,
$$

i.e., for any e_{β} with $\left|e_{\beta}\right|=1$,

$$
\partial_{\beta \beta} \log \left(u^{\varepsilon}\right)<-\psi(t)=\delta \tan (K \sqrt{\delta} t) \leqslant \delta
$$

for $0<\mathrm{t}<\min \left(\frac{\pi}{4 \mathrm{~K} \sqrt{\delta}}, \mathrm{~T}\right)$ and for $0<\varepsilon \ll \delta$.

- Letting $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$, we conclude that

$$
\partial_{\beta \beta} \log (u) \leqslant 0 \quad \text { in } \Omega \times(0, T] .
$$

Corollary (Log-concavity, $\mathrm{p}=1$)

Suppose that F satisfies (F 1), (F 2) and is concave. If Ω is convex, the eigenfunction $\varphi(\mathrm{x})$ is \log-concave, i. e., $\mathrm{D}^{2} \log (\varphi(\mathrm{x})) \leqslant 0$ in Ω.
Proof.

- Take dist $(x, \partial \Omega)$ as initial data $u_{o}(x)$.
- If Ω is convex, then $\operatorname{dist}(x, \partial \Omega)$ is concave and also log-concave.
- Let u solve $(P E)$ with $u_{o}(x)=\operatorname{dist}(x, \partial \Omega)$.
$\Rightarrow u(x, t)$ is log-concave for any $t>0$, i.e.,

$$
\frac{1}{2}(\log u(x, t)+\log u(y, t))-\log u\left(\frac{x+y}{2}, t\right) \leqslant 0 .
$$

- Uniform Convergence: $\left\|e^{\mu t} u(x, t)-\gamma^{*} \varphi(x)\right\|_{\mathrm{C}_{\mathrm{x}}^{0}(\bar{\Omega})} \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$.

$$
\Rightarrow \quad \frac{1}{2}(\log \varphi(x)+\log \varphi(y))-\log \varphi\left(\frac{x+y}{2}\right) \leqslant 0 .
$$

Degenerate parabolic Equation $(m>1)$

$$
\left\{\begin{array}{cll}
\mathrm{F}\left(\mathrm{D}^{2} u^{m}\right) & =u_{t} & \tag{DPE}\\
\mathrm{u}(x, \mathrm{t}) & =0 & \text { in } \Omega \times(0, \infty) \\
u(x, 0) & =u_{o}(x)>0 & \\
\text { in } \Omega
\end{array}\right.
$$

- (DPE) is degenerate at $u=0$
\because diffusion coefficient $=m u^{m-1}$
- Gas flow in a porous medium, Underground water infiltration
- $u=$ density, $v:=u^{m-1}=$ pressure,
- Scaling property
- u is a solution of (DPE)
\Rightarrow So is $\tilde{u}(x, t):=A u(B x, C t)$ when $C=A^{m-1} B^{2}$.
- Barenblatt (sub-) solutions

$$
V(x, t)=t^{-\alpha}\left(c-k \frac{|x|^{2}}{t^{\beta}}\right)_{+}^{\frac{1}{(m-1)}}
$$

where $\alpha=\frac{n \Lambda}{2 \lambda+n(m-1) \Lambda}, \quad \beta=\frac{2 \lambda}{2 \lambda+n(m-1) \Lambda}, \quad k=\frac{1}{2(2 \lambda+n(m-1) \Lambda)}$ and any $\mathrm{c}>0$.
: source-type solution of (DPE)

- waiting time, free boundary problem
- We assume

$$
0<\boldsymbol{c}_{o} \operatorname{dist}(x, \partial \Omega) \leqslant u_{o}(x) \leqslant C_{o} \operatorname{dist}(x, \partial \Omega) \quad \text { in } \Omega
$$

for some $0<\mathrm{c}_{\mathrm{o}}<\mathrm{C}_{\mathrm{o}}<+\infty$.

Asymptotics

Lemma (Aronson-Benilan inequality)
Let F satisfy (F 1) and be concave and let $v=\mathfrak{u}^{\mathrm{m}-1}$. Then,

$$
\mathrm{F}\left(\mathrm{D}^{2} \mathfrak{u}^{\mathrm{m}}\right)=\mathfrak{u}_{\mathrm{t}} \geqslant-\mathrm{C}(\mathfrak{m}) \frac{\mathrm{u}}{\mathrm{t}} \quad \text { and } \quad v_{\mathrm{t}} \geqslant-\mathrm{C}(\mathrm{~m}) \frac{v}{\mathrm{t}} .
$$

Lemma (Uniform Convergence, $m=\frac{1}{p}>1$)
Let F satisfy (F1), (F2). Then,

$$
\mathrm{t}^{\frac{1}{\mathrm{~m}-1}} \mathbf{u}(\mathrm{x}, \mathrm{t}) \rightarrow \varphi^{\frac{1}{m}}(\mathrm{x}) \quad \text { uniformly in } \bar{\Omega} \text { as } \mathrm{t} \rightarrow+\infty,
$$

where φ is the positive eigenfunction of (NLEV) with eigenvalue $\frac{1}{m-1}$.

- We note that for any $\tau>0$,

$$
\mathrm{U}(\mathrm{x}, \mathrm{t}):=\frac{\varphi^{\frac{1}{m}}(\mathrm{x})}{(\tau+\mathrm{t})^{\frac{1}{m-1}}} \text { is a similarity solution of (DPE) with } \mathrm{m}>1 \text {. }
$$

Square root concavity of the pressure

- Approximate the equation: for $0<\eta<1$,

$$
\left\{\begin{array}{cll}
F\left(D^{2} u_{\eta}^{m}\right) & =\partial_{t} u_{\eta} & \tag{DPE'}\\
\text { in } \Omega \times(0, \infty) \\
u_{\eta}(x, t) & =\eta & \\
u_{\eta, o}(x) & >\eta & \\
\text { on } \partial \Omega \times(0, \infty) \\
\text { in } \Omega
\end{array}\right.
$$

- For each $\eta>0$, the equation for $g_{\eta}:=u_{\eta}^{m}$:

$$
\mathrm{mg}_{\eta}^{1-\frac{1}{m}} F\left(D^{2} g_{\eta}\right)=\partial_{t} g_{\eta}
$$

becomes a uniformly parabolic equation. $\quad\left(\because u_{\eta}(x, t) \geqslant \eta>0\right)$

- Let $g:=u^{m}$ and $g_{\eta}:=u_{\eta}^{m}$.

$$
\text { Let } w:=\sqrt{v}=u^{\frac{m-1}{2}}=\mathrm{g}^{\frac{m-1}{2 m}} \text { and } w_{\eta}:=\sqrt{v_{\eta}}=u_{\eta}^{\frac{m-1}{2}}=\mathrm{g}_{\eta}^{\frac{m-1}{2 m}} \text {. }
$$

Lemma (Uniform Lipschitz estimates)

$$
\left|\nabla_{\chi} u_{\eta}^{m}\right|=\left|\nabla_{x} g_{\eta}\right|<C \quad \text { uniformly in } \quad \Omega \times(0, \mathrm{~T}] .
$$

$\Rightarrow \quad$ It suffices to show concavity of $w_{\eta}=u_{\eta}^{\frac{m-1}{2}}$ for each $\eta>0$.

Lemma (Boundary estimates)

Let F satisfy (F1), (F2) and be concave and let Ω be strictly convex. Assume $-\mathrm{C} \mathrm{u}_{\mathrm{o}} \leqslant \mathrm{F}\left(\mathrm{D}^{2} \mathrm{u}_{\mathrm{o}}^{\mathrm{m}}\right) \leqslant 0$ for $\mathrm{C}>0$. Then, for small $\eta>0$, and for any e_{α},

$$
w_{\eta, \alpha \alpha}(x, t)=\frac{m-1}{2 m_{\eta}^{2-\frac{m-1}{2 m}}}\left(g_{\eta} g_{\eta, \alpha \alpha}-\frac{m+1}{2 m} g_{\eta, \alpha}^{2}\right) \leqslant-\frac{c_{o}}{\eta^{\frac{m+1}{2}}}
$$

on $(x, t) \in \partial \Omega \times(0, T]$, where $c_{o}>0$ is independent of $\eta>0$.

Remark

(i) The boundary estimate holds if $\left|\mathrm{D}^{2} \mathrm{u}_{\eta}^{m}\right|=\left|\mathrm{D}^{2} \mathrm{~g}_{\eta}\right|$ is uniformly bounded in $\bar{\Omega} \times(0, T]$ w.r.t. $\eta>0$.
(ii) To get (i), we assume $-\mathrm{Cu}_{o} \leqslant \mathrm{~F}\left(\mathrm{D}^{2} \mathrm{u}_{\mathrm{o}}^{m}\right) \leqslant 0$ for $\mathrm{C}>0$.

$$
\left(\Rightarrow \partial_{\mathrm{t}} \mathrm{u} / \mathrm{u}\right. \text { is bounded.) }
$$

(iii) In general, we need to prove a weighted $\mathrm{C}^{2, \gamma}$ - estimate of u_{n} up to the boundary.

Lemma (Square root concavity of the pressure)

Suppose that F satisfies (F1), (F2) and is concave and Ω is strictly convex. Assume "Boundary Estimate" holds.
If $\sqrt{u_{o}^{m-1}}$ is concave, then $\sqrt{v}=\sqrt{u^{m-1}}(x, t)$ is concave in x for $\mathrm{t}>0$.
Proof.

- Fix $\eta>0$. Then $g_{\eta}=u_{\eta}^{m}$ solves a uniformly parabolic equation.
- Approximate the equation: for $0<\varepsilon, \eta<1$,

$$
\mathrm{F}^{\varepsilon}\left(\mathrm{D}^{2}\left(\mathfrak{u}_{\mathfrak{\eta}}^{\varepsilon}\right)^{m}\right)=\partial_{\mathrm{t}} \mathfrak{u}_{\eta}^{\varepsilon} \quad \text { in } \Omega \times(0, \infty),
$$

with smooth, concave F^{ε} satisfying (F 1)

$$
\begin{equation*}
\left|F^{\varepsilon}(M)-F_{i j}^{\varepsilon}(M) M_{i j}\right| \leqslant C \varepsilon \tag{F2'}
\end{equation*}
$$

- $w^{\varepsilon}:=\left(\mathfrak{u}_{\eta}^{\varepsilon}\right)^{\frac{m-1}{2}}=\left(g_{\eta}^{\varepsilon}\right)^{\frac{m-1}{2 m}}$ satisfies

$$
\partial_{\mathrm{t}} w=\frac{m-1}{2} w^{\frac{m-3}{m-1}} F^{\varepsilon}\left(\frac{2 m}{m-1} w^{\frac{3-m}{m-1}}\left(w^{2} D^{2} w+\frac{m+1}{m-1} w \nabla w \nabla w^{t}\right)\right) .
$$

Question $\mathrm{D}^{2} w^{\varepsilon} \leqslant 0$?

- In $\Omega \times(0, \mathrm{~T})$, for small $\delta>0$, assume

$$
\begin{aligned}
& \sup _{y \in \Omega,\left|e_{\beta}\right|=1} w_{\beta \beta}^{\varepsilon}(\mathrm{y}, \mathrm{t})+\psi(\mathrm{t})=0 \quad \text { at } \mathrm{t}=\mathrm{t}_{\mathrm{o}} \\
& =w_{\overline{\alpha \alpha}}^{\varepsilon}\left(0, \mathrm{t}_{\mathrm{o}}\right)+\psi\left(\mathrm{t}_{\mathrm{o}}\right),
\end{aligned}
$$

where $\psi(t)=-\varepsilon-e^{-1 / \delta} e^{K t} \tan (K \sqrt{\delta} t)$, and $K>0$ is independent of $\varepsilon, \delta, \eta>0$.

- $t_{0}>0$ from the initial condition.
- The maximum point $x=0$ is interior from "Boundary estimates".
- We use the function

$$
\mathrm{Z}(x, \mathrm{t})=\sum_{\alpha, \beta} w_{\alpha \beta}^{\varepsilon} \xi^{\alpha} \xi^{\beta}, \quad \text { tilted } w_{\alpha \alpha}^{\varepsilon} " \text { around }\left(0, \mathrm{t}_{\mathrm{o}}\right),
$$

where $\xi^{\beta}(x)=\delta_{\bar{\alpha} \beta}+c_{\bar{\alpha}} \chi^{\beta}+\frac{1}{2} c_{\bar{\alpha}} c_{\gamma} \chi^{\gamma} \chi^{\beta}$, and $\vec{\xi}^{t}:=\left(\xi^{1}, \cdots, \xi^{n}\right)$ and look at the evolution of

$$
Y(x, t):=Z(x, t)+\psi(t)|\vec{\xi}(x)|^{2} .
$$

The remaining argument is similar to the case of $m=1$.

Corollary ($0<p=\frac{1}{m}<1$)
Let F satisfy (F1), (F2) and be concave and let Ω be convex. Then, $\varphi^{\frac{m-1}{2 m}}=\varphi^{\frac{1-p}{2}}$ is concave.

Thank you.

